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Data.ai is the premier provider of mobile 
marketplace data and ecosystem insights.
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One of data.ai’s cornerstone products is our 
best- in- cla ss downloa ds estima tes.

Downloads estimates are produced using Ranks 
by da ta .a i, a mong other things.

R a n k s  b y  d a t a . a i  i s  a n  M L  m o d e l  t h a t  u s e s  o u r  
understa nding a nd qua ntifica tion of the mobile 
ecosystem to ra nk a pp performa nce.

These ranks and downloads estimates allow our 
customers to benchma rk their performa nce 
a ga inst their competitors.



What is MLOps?

Machine Learning Operation s

According to Databricks : MLOps is “...focused 
on streamlining the process of taking machine 
learning models to production, and then 
maintaining and monitoring them.”

MLOps provides the benefits of:
1. Efficiency
2. Risk reduction
3. Scalability

MLOps processes are agnostic to the ML 
problem or even industry; lessons learned by 
scaling MLOps are applicable across the board.
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https://www.databricks.com/glossary/mlops


Scaling MLOps at data.ai Presents Challenges

The Ranks by data.ai model has many features, 
but is itself a simple enough model.

The technical difficulty is in combinatorics: we 
have to scale to accommodate 175 countries, 
multiple metrics per country, sub-models, etc.
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This product requires managing model training, 
stora ge, inference, etc. every week for more 
tha n 50 thousand individual models.

How do we approach model development, 
training, and maintenance for 50k models?



Agenda

1. Introduction to Pandas UDFs

1. Three tips for scaling MLOps in UDFs
a. Start small
b. Wait your turn
c. Keep things clean

1. Limitations
a. Batch processing vs real- time
b. Potential workarounds or extensions
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Follow along on Medium!



Introduction to 
Pa nda s UDFs



Pandas UDFs are User-Defined 
Functions tha t ca n be used on a  Spa rk 
da ta fra me.

Pandas UDFs: The Basics

Pa nda s UDFs vectorize computa tions
and are therefore more efficient .

Regula r Spa rk UDFs operate row - by- row; 
extra  flexibility costs in execution time.

Pa nda s function APIs are similar to 
UDFs but opera te on full da ta fra mes, 
a llowing for custom a ggrega tions.
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https://docs.databricks.com/en/udf/pandas.html
https://docs.databricks.com/en/udf/python.html
https://docs.databricks.com/en/pandas/pandas-function-apis.html


Let’s illustrate grouped Pandas functions 
by crea ting our own grouped a vera ge.

Pandas UDFs: Grouped Average Example

The example is simple, but will show us how 
we ca n expa nd it  to ML model tra ining 
la ter.

import pandas as pd
import numpy as np

a_vals = [np.random.random() for _ in range(5)]
b_vals = [np.random.random() + 3 for _ in range(5)]

test_pdf = pd.DataFrame({
'group': ['a' for _ in range(5)] + ['b' for _ in range(5)],
'value': a_vals + b_vals

})

test_df = spark.createDataFrame(test_pdf)

(
test_df
.groupBy(['group'])
.agg(F.avg('value').alias('avg_value'))

).show()

F i r s t ,  l e t ’ s  c r e a t e  a  s a m p l e  d a t a f r a m e .  
Let’s sa mple 5 ra ndom va lues a nd la bel 
them ‘a ’, a nd ta ke a nother 5 ra ndom 
va lues, a dd a  consta nt offset  of 3, a nd la bel 
them ‘b’.
The built - in grouped a vera ge function is a  
simple groupby/a ggrega te ca ll.
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Instead of the built- in, let’s define our 
own group a vera ge UDF.

Pandas UDFs: Grouped Average Example
def group_average_udf(pdf):

this_group = pdf['group'].values[0]
group_average = np.mean(pdf['value'])
return pd.DataFrame({

'group': [this_group], 
'avg_value': [group_average]

})

We just need to do two things: pull  the ID of 
this group a nd ca lcula te the a vera ge va lue.
● These a re returned a s a  pa nda s df

To apply this function, we need to specify a 
return schema  using Spa rk types. 

from pyspark.sql import types as T
avg_schema = T.StructType([

T.StructField('group', T.StringType()),
T.StructField('avg_value', T.FloatType())

])

Finally, applying our new function is as 
simple a s using the built- in a vera ge:

avg_values = (
test_df
.groupBy(['group'])
.applyInPandas(

group_average_udf, 
avg_schema

)
)

avg_values.show()
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Building a Model 
Tra ining UDF



First Tip to Scaling: Start Small

As we’ve seen before, a UDF is only a function that 
takes in and returns a pandas dataframe.

We can leverage the fact that this is just a function 
by building our function against a pandas df.
● We ca n extra ct one group from our Spa rk df 

a nd use tha t to itera te on the UDF. group_a = test_df.where('group=="a"').toPandas()
a_avg = group_average_udf(group_a)
a_avg.head()

def group_average_udf(pdf: pd.DataFrame) -> pd.DataFrame:
this_group = pdf['group'].values[0]
group_average = np.mean(pdf['value'])
return pd.DataFrame({

'group': [this_group], 
'avg_value': [group_average]

})

Now we can start to see how to build out a model 
tra ining UDF which ca n ult ima tely be sca led.
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First Tip to Scaling: Start Small

Let’s build a modeling example. The Ranks by 
data.ai project is based on a random forest, so 
let’s use a regression example from sklearn.

Let’s also create arbitrary groups: high and low 
for target values above or below the median.

from sklearn.datasets import fetch_california_housing
import pandas as pd

california_data = fetch_california_housing()
california_pdf = pd.DataFrame(

california_data.data,     
columns=california_data.feature_names

)
california_pdf['target'] = california_data.target
california_df = spark.createDataFrame(california_pdf)

california_df = (
california_df
.withColumn(

'relative_target', 
F.when(

F.col('target') > 2.5, F.lit('high')
)
.otherwise(F.lit('low')

)
)

low_pdf = (
california_df
.filter(F.col('relative_target')=='low')

).toPandas()

Finally,  let’s extract  one group for further testing.
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First Tip to Scaling: Start Small

Now we can write our fitting function. Inside the 
function, we can simply fit a random forest 
regressor to the features/target in the df.

from sklearn.ensemble import RandomForestRegressor

features = california_data.feature_names

def fit_california_udf(training_pdf):
# Initialize and fit
this_group = training_pdf['relative_target'].values[0]
this_group_model = RandomForestRegressor()
this_group_model.fit(

training_pdf[features], 
training_pdf['target']

)

# Log to MLFlow
with mlflow.start_run() as run:

# Log model
mlflow.sklearn.log_model(

this_group_model,
artifact_path=f"california_model_{this_group}"

)

return pd.DataFrame({
'relative_target': [this_group], 
'model_path': [f"runs:/{run_id}/california_model_{this_group}"]})

Next, we can add MLFlow logging. Most simply, we 
just  sta rt  a n MLFlow run a nd then log the model.

We need to return a pandas df for the UDF to run. 
The pa th of the stored model object is a  useful 
return va lue to keep tra ck of.

low_model_path_pdf = fit_california_udf(low_pdf)
low_model_path_pdf

Finally, we can test our function on the pandas df 
for the single group, a nd see tha t it  works. 

We ca n a lso loa d the model object a nd confirm 
tha t it  ca n produce predictions.
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A sneakier issue with large numbers of groups is 
the MLFlow API ra te limit.

To avoid hitting rate limit errors (429), we need to 
a dd a  jit ter before logging the model so tha t 
different groups will be querying a t  different 
t imes.

However,  a  simple random ji t ter  would not  be 
effective, beca use ma ny ra ndom seeds a re 
determined by the current computer t ime.
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Second Tip to Scaling: Rate Limit

https://docs.databricks.com/en/resources/limits.html


Second Tip to Scaling: Rate Limit
def fit_california_udf(training_pdf):

# Initialize and fit
this_group = training_pdf['relative_target'].values[0]
this_group_model = RandomForestRegressor()
this_group_model.fit(training_pdf[features], training_pdf['target'])

# Log to MLFlow
run_id = training_pdf['run_id'].values[0]
experiment_id = training_pdf['experiment_id'].values[0]
run_params = {'run_id': run_id, 'experiment_id': experiment_id} 
with mlflow.start_run(**run_params, nested=True) as run:

# Add jitter with reset random seed
random.seed(abs(hash(this_group)) % (10 ** 4))
rand_wait = random.random()
time.sleep(rand_wait*5) # Wait up to 5 seconds

mlflow.sklearn.log_model(
this_group_model, 
artifact_path=f"california_model_{this_group}"

)
model_path = f"runs:/{run_id}/california_model_{this_group}"

return pd.DataFrame({
'relative_target': [this_group], 
'model_path': [model_path]

})

A better way to handle the rate limit is by using 
something unique to the group, such as its name.

By using the unique group name (or combination of 
groups if multiple dimensions), a distinct hash can 
be used to set the random seed. These are much 
more likely to be unique and truly avoid rate limit.
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1. Pa nda s UDFs ca n be used to pa ra llelize 
a rbitra ry pa nda s functions in Spa rk.

1. UDFs ca n be developed by using a  single 
group a s a  pa nda s df before a pplying the 
function to the whole Spa rk df.

1. Nesting runs pa cka ges model a rtifa cts into a  
single run, useful for orga niza tion.

1. MLFlow ha s a  ra te limit , but execution ca n 
be jit tered to a void getting errors.

1. UDFs ca n return a  pa th to tha t group’s 
specific model object in MLFlow.

Interim Summary
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Building a Model 
Inference UDF



Group Inference UDF

def predict_california_udf(features_w_models_pdf):
# Decode group and model path

this_group = features_w_models_pdf['relative_target'].values[0]
this_model = features_w_models_pdf['model_path'].values[0]

# Add jitter with reset random seed
random.seed(abs(hash(this_group)) % (10 ** 4))
rand_wait = random.random()
time.sleep(rand_wait*5) # Wait random time up to 5 seconds
# Load model
this_model = mlflow.sklearn.load_model(this_model)
features_w_models_pdf['prediction'] = this_model.predict(

features_w_models_pdf[features]
)
return features_w_models_pdf

Now that we’ve stored our grouped models, we 
need to be able to use them for inference. 

We can use our previous lessons to build a UDF for 
prediction, including using a random jitter to avoid 
the rate limit error (429).

We can apply this UDF the same way we applied 
the training, calling it with applyInPandas
● The return schema  is constructed from the 

JSON of the input df schema . This boilerpla te is 
a n ea sy wa y to a dd a  column to a  complex 
schema  without encountering deep/sha llow 
copy issues.

# Join model path
df_w_models = california_df.join(

model_paths_df, 
['relative_target']

)

# Define return schema
df_json = df_w_models.select('*').schema.jsonValue()
preds_schema = (

T.StructType()
.fromJson(df_json)
.add(T.StructField('prediction', T.FloatType()))

)

# Apply inference
df_w_preds = (

df_w_models
.groupBy(['relative_target'])
.applyInPandas(predict_california_udf, preds_schema)

)

©2024 Databricks Inc. — All rights reserved



Third Tip to Scaling: Keep Things Clean

def predict_california_udf(features_w_models_pdf):
# Decode group and model path
this_group = features_w_models_pdf['relative_target'].values[0]
this_model = features_w_models_pdf['model_path'].values[0]

# Add jitter with reset random seed
random.seed(abs(hash(this_group)) % (10 ** 4))
rand_wait = random.random()
time.sleep(rand_wait*5) # Wait random time up to 5 seconds

# Set up tmp directory for model artifact
os.system(f'mkdir "/tmp/{this_group}/"')
# Load model
this_model = mlflow.sklearn.load_model(

this_model, 
dst_path=f"/tmp/{this_group}/"

)
features_w_models_pdf['prediction'] = this_model.predict(

features_w_models_pdf[features]
)
# Cleanup by deleting model artifacts for this model
os.system(f'rm -r "/tmp/{this_group}/"')

return features_w_models_pdf

The inference UDF does offer opportunities for 
errors to come in that are hard to diagnose.

One particular error is memory; when we load the 
model, it stores the model object to the /tmp/ 
directory on the worker node. If the /tmp/ 
directory is never cleared then the worker runs out 
of memory as groups scale up.

We can avoid this memory error by deleting the 
model objects once we’ve done inference.  

We can do this by specifying where the object 
is stored when loaded, and then deleting that 
object after running inference.
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Putting It All Together df_w_preds = (
df_w_models
.groupBy(['relative_target'])
.applyInPandas(predict_california_udf, preds_schema)

)

grouped_preds_pdf = df_w_preds.toPandas()

plt.scatter(
grouped_preds_pdf.query('relative_target=="high"')['target'],
grouped_preds_pdf.query('relative_target=="high"')['prediction']

)
plt.scatter(

grouped_preds_pdf.query('relative_target=="low"')['target'],
grouped_preds_pdf.query('relative_target=="low"')['prediction']

)
plt.show()

Now that we’ve ensured we keep our resources 
available, let’s re- run the inference UDF in Spark 
and test that the models are in fact separate.

We’ll test the model outputs by making a scatter 
plot, keeping our two groups separate colors.

We can clearly see that the models are doing well, 
as there is a strong correlation between target 
and prediction. We also see a clear break in the 
middle where we split our groups in to two. This 
trend break confirms the separation of models.
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1. The sa me pa ra lleliza tion techniques used for 
model tra ining a re a lso used for inference.

1. In a ddition to respecting the ra te limit , 
inference UDFs a lso need to clea r out model 
objects so tha t worker nodes do not run out 
of memory from models flooding / tmp/ .

1. Adding a  column using a n existing schema  
ca n be done but requires pa rticula r 
boilerpla te due to la zy eva lua tion.

Interim Summary 2
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Limitations and 
Considera tions



1. There wa s no cross- va lida tion or other 
typica l model selection process depicted.
a . These could a lso be ba ked into model 

tra ining, or into a  sepa ra te UDF

1. We did not register the models
a . Simila rly, model registra tion could be 

a dded to the tra ining procedure
b. Even a  cha mpion- cha llenger compa rison 

could be done in a  registra tion UDF.

1. Wha t a bout multiple groups?
a . No difference in n procedure, just  need to 

incorpora te multiple groups into 
model_pa ths a nd jit ter va lues.

Trivial Considerations
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Serious Considerations: Real -Time Inference

1. Long retraining and inference times
a. Avoiding the rate limit for large 

combinatorics can be difficult.
b. Rate- limit avoidance time becomes a 

limiting factor for real time applications.

1. How to manage 50k model endpoints?
a. Real- time inference would require some 

kind of gateway to route traffic to the 
separate models, based on inputs.
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One Real-Time Suggestion: PyFunc Wrapper

A PyFunc wrapper is a generic MLFlow model 
object that has greater flexibility than specific 
flavors (e.g., sklearn, spark, etc.). 

PyFunc wrappers have context ; they can load 
artifacts into the endpoint.

PyFunc wrapper can be used as a gateway to 
(1) models in its context or (2) separate model 
endpoints.

class ModelWrapper(mlflow.pyfunc.PythonModel):
models = {}
model_groups = ['high', 'low']

def load_context(self, context):
import pandas as pd

self.models = {}
for model in self.model_groups:

self.models[model] = mlflow.sklearn.load_model(
f'models:/california_model_{model}/latest'

)

def predict(self, context, input_pdf):
this_group = input_pdf['relative_target'].values[0]
this_model = self.models[this_group]
predictions = this_model.predict(input_pdf)
return pd.Series(predictions)

mlflow.pyfunc.log_model(
artifact_path='california_model_wrapper',
python_model=ModelWrapper(),
registered_model_name='registered_california_model'

)
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Conclusion



What We’ve Learned

1. Introduction to Pandas UDFs

1. Three tips for scaling MLOps in UDFs
a. Start small
b. Wait your turn
c. Keep things clean

1. Limitations
a. Batch processing vs real- time
b. Potential workarounds or extensions
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Find this on Medium!



data.ai is now a part of Sensor Tower!

The ML techniques presented today are not 
specific to data.ai, or to Sensor Tower.

These techniques are not even specific to 
any industry: they can be used for any 
grouped ML problem needing tracking.

As we push forward on Sensor Tower’s 
mission to measure the world’s digital 
economy, these skills will allow us to 
efficiently build and scale brand new ML 
applications, helping to bridge the gap 
between companies and customers.
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Thank You
— da ta .a i —
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