
Scaling MLOps to Retrain 50k
Weekly Models in Pa ra llel

Using UDFs
— Ka leb A. Lowe, PhD —

Ranks by data.ai: Capturing 360 Mobile Performance

COPYRIGHT 2023 | DATA.Al

Data.ai is the premier provider of mobile
marketplace data and ecosystem insights.

M
ob

ile
 A

pp

KP
Is

M
L

M
od

el
A

pp

Ra
nk

s
Do

w
nl

oa
d

Es
tim

at
e

©2024 Databricks Inc. — All rights reserved

One of data.ai’s cornerstone products is our
best- in- cla ss downloa ds estima tes.

Downloads estimates are produced using Ranks
by da ta .a i, a mong other things.

R a n k s b y d a t a . a i i s a n M L m o d e l t h a t u s e s o u r
understa nding a nd qua ntifica tion of the mobile
ecosystem to ra nk a pp performa nce.

These ranks and downloads estimates allow our
customers to benchma rk their performa nce
a ga inst their competitors.

What is MLOps?

Machine Learning Operation s

According to Databricks : MLOps is “...focused
on streamlining the process of taking machine
learning models to production, and then
maintaining and monitoring them.”

MLOps provides the benefits of:
1. Efficiency
2. Risk reduction
3. Scalability

MLOps processes are agnostic to the ML
problem or even industry; lessons learned by
scaling MLOps are applicable across the board.

©2024 Databricks Inc. — All rights reserved

https://www.databricks.com/glossary/mlops

Scaling MLOps at data.ai Presents Challenges

The Ranks by data.ai model has many features,
but is itself a simple enough model.

The technical difficulty is in combinatorics: we
have to scale to accommodate 175 countries,
multiple metrics per country, sub-models, etc.

©2024 Databricks Inc. — All rights reserved

This product requires managing model training,
stora ge, inference, etc. every week for more
tha n 50 thousand individual models.

How do we approach model development,
training, and maintenance for 50k models?

Agenda

1. Introduction to Pandas UDFs

1. Three tips for scaling MLOps in UDFs
a. Start small
b. Wait your turn
c. Keep things clean

1. Limitations
a. Batch processing vs real- time
b. Potential workarounds or extensions

©2024 Databricks Inc. — All rights reserved

Follow along on Medium!

Introduction to
Pa nda s UDFs

Pandas UDFs are User-Defined
Functions tha t ca n be used on a Spa rk
da ta fra me.

Pandas UDFs: The Basics

Pa nda s UDFs vectorize computa tions
and are therefore more efficient .

Regula r Spa rk UDFs operate row - by- row;
extra flexibility costs in execution time.

Pa nda s function APIs are similar to
UDFs but opera te on full da ta fra mes,
a llowing for custom a ggrega tions.

©2024 Databricks Inc. — All rights reserved

https://docs.databricks.com/en/udf/pandas.html
https://docs.databricks.com/en/udf/python.html
https://docs.databricks.com/en/pandas/pandas-function-apis.html

Let’s illustrate grouped Pandas functions
by crea ting our own grouped a vera ge.

Pandas UDFs: Grouped Average Example

The example is simple, but will show us how
we ca n expa nd it to ML model tra ining
la ter.

import pandas as pd
import numpy as np

a_vals = [np.random.random() for _ in range(5)]
b_vals = [np.random.random() + 3 for _ in range(5)]

test_pdf = pd.DataFrame({
'group': ['a' for _ in range(5)] + ['b' for _ in range(5)],
'value': a_vals + b_vals

})

test_df = spark.createDataFrame(test_pdf)

(
test_df
.groupBy(['group'])
.agg(F.avg('value').alias('avg_value'))

).show()

F i r s t , l e t ’ s c r e a t e a s a m p l e d a t a f r a m e .
Let’s sa mple 5 ra ndom va lues a nd la bel
them ‘a ’, a nd ta ke a nother 5 ra ndom
va lues, a dd a consta nt offset of 3, a nd la bel
them ‘b’.
The built - in grouped a vera ge function is a
simple groupby/a ggrega te ca ll.

©2024 Databricks Inc. — All rights reserved

Instead of the built- in, let’s define our
own group a vera ge UDF.

Pandas UDFs: Grouped Average Example
def group_average_udf(pdf):

this_group = pdf['group'].values[0]
group_average = np.mean(pdf['value'])
return pd.DataFrame({

'group': [this_group],
'avg_value': [group_average]

})

We just need to do two things: pull the ID of
this group a nd ca lcula te the a vera ge va lue.
● These a re returned a s a pa nda s df

To apply this function, we need to specify a
return schema using Spa rk types.

from pyspark.sql import types as T
avg_schema = T.StructType([

T.StructField('group', T.StringType()),
T.StructField('avg_value', T.FloatType())

])

Finally, applying our new function is as
simple a s using the built- in a vera ge:

avg_values = (
test_df
.groupBy(['group'])
.applyInPandas(

group_average_udf,
avg_schema

)
)

avg_values.show()

©2024 Databricks Inc. — All rights reserved

Building a Model
Tra ining UDF

First Tip to Scaling: Start Small

As we’ve seen before, a UDF is only a function that
takes in and returns a pandas dataframe.

We can leverage the fact that this is just a function
by building our function against a pandas df.
● We ca n extra ct one group from our Spa rk df

a nd use tha t to itera te on the UDF. group_a = test_df.where('group=="a"').toPandas()
a_avg = group_average_udf(group_a)
a_avg.head()

def group_average_udf(pdf: pd.DataFrame) -> pd.DataFrame:
this_group = pdf['group'].values[0]
group_average = np.mean(pdf['value'])
return pd.DataFrame({

'group': [this_group],
'avg_value': [group_average]

})

Now we can start to see how to build out a model
tra ining UDF which ca n ult ima tely be sca led.

©2024 Databricks Inc. — All rights reserved

First Tip to Scaling: Start Small

Let’s build a modeling example. The Ranks by
data.ai project is based on a random forest, so
let’s use a regression example from sklearn.

Let’s also create arbitrary groups: high and low
for target values above or below the median.

from sklearn.datasets import fetch_california_housing
import pandas as pd

california_data = fetch_california_housing()
california_pdf = pd.DataFrame(

california_data.data,
columns=california_data.feature_names

)
california_pdf['target'] = california_data.target
california_df = spark.createDataFrame(california_pdf)

california_df = (
california_df
.withColumn(

'relative_target',
F.when(

F.col('target') > 2.5, F.lit('high')
)
.otherwise(F.lit('low')

)
)

low_pdf = (
california_df
.filter(F.col('relative_target')=='low')

).toPandas()

Finally, let’s extract one group for further testing.

©2024 Databricks Inc. — All rights reserved

First Tip to Scaling: Start Small

Now we can write our fitting function. Inside the
function, we can simply fit a random forest
regressor to the features/target in the df.

from sklearn.ensemble import RandomForestRegressor

features = california_data.feature_names

def fit_california_udf(training_pdf):
Initialize and fit
this_group = training_pdf['relative_target'].values[0]
this_group_model = RandomForestRegressor()
this_group_model.fit(

training_pdf[features],
training_pdf['target']

)

Log to MLFlow
with mlflow.start_run() as run:

Log model
mlflow.sklearn.log_model(

this_group_model,
artifact_path=f"california_model_{this_group}"

)

return pd.DataFrame({
'relative_target': [this_group],
'model_path': [f"runs:/{run_id}/california_model_{this_group}"]})

Next, we can add MLFlow logging. Most simply, we
just sta rt a n MLFlow run a nd then log the model.

We need to return a pandas df for the UDF to run.
The pa th of the stored model object is a useful
return va lue to keep tra ck of.

low_model_path_pdf = fit_california_udf(low_pdf)
low_model_path_pdf

Finally, we can test our function on the pandas df
for the single group, a nd see tha t it works.

We ca n a lso loa d the model object a nd confirm
tha t it ca n produce predictions.

©2024 Databricks Inc. — All rights reserved

A sneakier issue with large numbers of groups is
the MLFlow API ra te limit.

To avoid hitting rate limit errors (429), we need to
a dd a jit ter before logging the model so tha t
different groups will be querying a t different
t imes.

However, a simple random ji t ter would not be
effective, beca use ma ny ra ndom seeds a re
determined by the current computer t ime.

Random wait

Train + Log

Random wait

Train + Log

Random wait

Train + Log

Random wait

Train + Log

C
lo

ck
-B

as
ed

Se

ed
in

g

Random wait

Train + Log
Random wait

Train + Log

Random wait

Train + Log
Random wait

Train + Log

Pa
rti

tio
n

Ha
sh

Ba

se
d

Se
ed

in
g

©2024 Databricks Inc. — All rights reserved

Second Tip to Scaling: Rate Limit

https://docs.databricks.com/en/resources/limits.html

Second Tip to Scaling: Rate Limit
def fit_california_udf(training_pdf):

Initialize and fit
this_group = training_pdf['relative_target'].values[0]
this_group_model = RandomForestRegressor()
this_group_model.fit(training_pdf[features], training_pdf['target'])

Log to MLFlow
run_id = training_pdf['run_id'].values[0]
experiment_id = training_pdf['experiment_id'].values[0]
run_params = {'run_id': run_id, 'experiment_id': experiment_id}
with mlflow.start_run(**run_params, nested=True) as run:

Add jitter with reset random seed
random.seed(abs(hash(this_group)) % (10 ** 4))
rand_wait = random.random()
time.sleep(rand_wait*5) # Wait up to 5 seconds

mlflow.sklearn.log_model(
this_group_model,
artifact_path=f"california_model_{this_group}"

)
model_path = f"runs:/{run_id}/california_model_{this_group}"

return pd.DataFrame({
'relative_target': [this_group],
'model_path': [model_path]

})

A better way to handle the rate limit is by using
something unique to the group, such as its name.

By using the unique group name (or combination of
groups if multiple dimensions), a distinct hash can
be used to set the random seed. These are much
more likely to be unique and truly avoid rate limit.

©2024 Databricks Inc. — All rights reserved

1. Pa nda s UDFs ca n be used to pa ra llelize
a rbitra ry pa nda s functions in Spa rk.

1. UDFs ca n be developed by using a single
group a s a pa nda s df before a pplying the
function to the whole Spa rk df.

1. Nesting runs pa cka ges model a rtifa cts into a
single run, useful for orga niza tion.

1. MLFlow ha s a ra te limit , but execution ca n
be jit tered to a void getting errors.

1. UDFs ca n return a pa th to tha t group’s
specific model object in MLFlow.

Interim Summary

©2024 Databricks Inc. — All rights reserved

Building a Model
Inference UDF

Group Inference UDF

def predict_california_udf(features_w_models_pdf):
Decode group and model path

this_group = features_w_models_pdf['relative_target'].values[0]
this_model = features_w_models_pdf['model_path'].values[0]

Add jitter with reset random seed
random.seed(abs(hash(this_group)) % (10 ** 4))
rand_wait = random.random()
time.sleep(rand_wait*5) # Wait random time up to 5 seconds
Load model
this_model = mlflow.sklearn.load_model(this_model)
features_w_models_pdf['prediction'] = this_model.predict(

features_w_models_pdf[features]
)
return features_w_models_pdf

Now that we’ve stored our grouped models, we
need to be able to use them for inference.

We can use our previous lessons to build a UDF for
prediction, including using a random jitter to avoid
the rate limit error (429).

We can apply this UDF the same way we applied
the training, calling it with applyInPandas
● The return schema is constructed from the

JSON of the input df schema . This boilerpla te is
a n ea sy wa y to a dd a column to a complex
schema without encountering deep/sha llow
copy issues.

Join model path
df_w_models = california_df.join(

model_paths_df,
['relative_target']

)

Define return schema
df_json = df_w_models.select('*').schema.jsonValue()
preds_schema = (

T.StructType()
.fromJson(df_json)
.add(T.StructField('prediction', T.FloatType()))

)

Apply inference
df_w_preds = (

df_w_models
.groupBy(['relative_target'])
.applyInPandas(predict_california_udf, preds_schema)

)

©2024 Databricks Inc. — All rights reserved

Third Tip to Scaling: Keep Things Clean

def predict_california_udf(features_w_models_pdf):
Decode group and model path
this_group = features_w_models_pdf['relative_target'].values[0]
this_model = features_w_models_pdf['model_path'].values[0]

Add jitter with reset random seed
random.seed(abs(hash(this_group)) % (10 ** 4))
rand_wait = random.random()
time.sleep(rand_wait*5) # Wait random time up to 5 seconds

Set up tmp directory for model artifact
os.system(f'mkdir "/tmp/{this_group}/"')
Load model
this_model = mlflow.sklearn.load_model(

this_model,
dst_path=f"/tmp/{this_group}/"

)
features_w_models_pdf['prediction'] = this_model.predict(

features_w_models_pdf[features]
)
Cleanup by deleting model artifacts for this model
os.system(f'rm -r "/tmp/{this_group}/"')

return features_w_models_pdf

The inference UDF does offer opportunities for
errors to come in that are hard to diagnose.

One particular error is memory; when we load the
model, it stores the model object to the /tmp/
directory on the worker node. If the /tmp/
directory is never cleared then the worker runs out
of memory as groups scale up.

We can avoid this memory error by deleting the
model objects once we’ve done inference.

We can do this by specifying where the object
is stored when loaded, and then deleting that
object after running inference.

©2024 Databricks Inc. — All rights reserved

Putting It All Together df_w_preds = (
df_w_models
.groupBy(['relative_target'])
.applyInPandas(predict_california_udf, preds_schema)

)

grouped_preds_pdf = df_w_preds.toPandas()

plt.scatter(
grouped_preds_pdf.query('relative_target=="high"')['target'],
grouped_preds_pdf.query('relative_target=="high"')['prediction']

)
plt.scatter(

grouped_preds_pdf.query('relative_target=="low"')['target'],
grouped_preds_pdf.query('relative_target=="low"')['prediction']

)
plt.show()

Now that we’ve ensured we keep our resources
available, let’s re- run the inference UDF in Spark
and test that the models are in fact separate.

We’ll test the model outputs by making a scatter
plot, keeping our two groups separate colors.

We can clearly see that the models are doing well,
as there is a strong correlation between target
and prediction. We also see a clear break in the
middle where we split our groups in to two. This
trend break confirms the separation of models.

©2024 Databricks Inc. — All rights reserved

1. The sa me pa ra lleliza tion techniques used for
model tra ining a re a lso used for inference.

1. In a ddition to respecting the ra te limit ,
inference UDFs a lso need to clea r out model
objects so tha t worker nodes do not run out
of memory from models flooding / tmp/ .

1. Adding a column using a n existing schema
ca n be done but requires pa rticula r
boilerpla te due to la zy eva lua tion.

Interim Summary 2

©2024 Databricks Inc. — All rights reserved

Limitations and
Considera tions

1. There wa s no cross- va lida tion or other
typica l model selection process depicted.
a . These could a lso be ba ked into model

tra ining, or into a sepa ra te UDF

1. We did not register the models
a . Simila rly, model registra tion could be

a dded to the tra ining procedure
b. Even a cha mpion- cha llenger compa rison

could be done in a registra tion UDF.

1. Wha t a bout multiple groups?
a . No difference in n procedure, just need to

incorpora te multiple groups into
model_pa ths a nd jit ter va lues.

Trivial Considerations

©2024 Databricks Inc. — All rights reserved

Serious Considerations: Real -Time Inference

1. Long retraining and inference times
a. Avoiding the rate limit for large

combinatorics can be difficult.
b. Rate- limit avoidance time becomes a

limiting factor for real time applications.

1. How to manage 50k model endpoints?
a. Real- time inference would require some

kind of gateway to route traffic to the
separate models, based on inputs.

©2024 Databricks Inc. — All rights reserved

One Real-Time Suggestion: PyFunc Wrapper

A PyFunc wrapper is a generic MLFlow model
object that has greater flexibility than specific
flavors (e.g., sklearn, spark, etc.).

PyFunc wrappers have context ; they can load
artifacts into the endpoint.

PyFunc wrapper can be used as a gateway to
(1) models in its context or (2) separate model
endpoints.

class ModelWrapper(mlflow.pyfunc.PythonModel):
models = {}
model_groups = ['high', 'low']

def load_context(self, context):
import pandas as pd

self.models = {}
for model in self.model_groups:

self.models[model] = mlflow.sklearn.load_model(
f'models:/california_model_{model}/latest'

)

def predict(self, context, input_pdf):
this_group = input_pdf['relative_target'].values[0]
this_model = self.models[this_group]
predictions = this_model.predict(input_pdf)
return pd.Series(predictions)

mlflow.pyfunc.log_model(
artifact_path='california_model_wrapper',
python_model=ModelWrapper(),
registered_model_name='registered_california_model'

)

©2024 Databricks Inc. — All rights reserved

Conclusion

What We’ve Learned

1. Introduction to Pandas UDFs

1. Three tips for scaling MLOps in UDFs
a. Start small
b. Wait your turn
c. Keep things clean

1. Limitations
a. Batch processing vs real- time
b. Potential workarounds or extensions

©2024 Databricks Inc. — All rights reserved

Find this on Medium!

data.ai is now a part of Sensor Tower!

The ML techniques presented today are not
specific to data.ai, or to Sensor Tower.

These techniques are not even specific to
any industry: they can be used for any
grouped ML problem needing tracking.

As we push forward on Sensor Tower’s
mission to measure the world’s digital
economy, these skills will allow us to
efficiently build and scale brand new ML
applications, helping to bridge the gap
between companies and customers.

©2024 Databricks Inc. — All rights reserved

Thank You
— da ta .a i —

	Slide Number 1
	Ranks by data.ai: Capturing 360 Mobile Performance
	What is MLOps?
	Scaling MLOps at data.ai Presents Challenges
	Agenda
	Slide Number 6
	Pandas UDFs: The Basics
	Pandas UDFs: Grouped Average Example
	Pandas UDFs: Grouped Average Example
	Slide Number 11
	First Tip to Scaling: Start Small
	First Tip to Scaling: Start Small
	First Tip to Scaling: Start Small
	Second Tip to Scaling: Rate Limit
	Second Tip to Scaling: Rate Limit
	Interim Summary
	Slide Number 21
	Group Inference UDF
	Third Tip to Scaling: Keep Things Clean
	Putting It All Together
	Interim Summary 2
	Slide Number 26
	Trivial Considerations
	Serious Considerations: Real-Time Inference
	One Real-Time Suggestion: PyFunc Wrapper
	Slide Number 30
	What We’ve Learned
	Slide Number 32
	Slide Number 33

